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Klein tunneling in binary photonic superlattices
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A photonic analog of Klein tunneling for a relativistic electron across a potential step, based on spatial light
propagation in an engineered binary waveguide array, is proposed. Klein tunneling can be simply visualized as
optical beam refraction through a step-index interface, superimposed to the superlattice, and explained as an
interband tunneling process between positive-energy (electron) and negative-energy (positron) minibands of
the superlattice. Inhibition of Klein tunneling for a smooth potential step is also demonstrated.
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I. INTRODUCTION

Klein tunneling (KT) refers to the prediction that relativ-
istic fermions can pass through large repulsive potential steps
without the exponential damping expected in quantum tun-
neling processes of nonrelativistic particles."> This phenom-
enon is a property of relativistic wave equations and arises
from the existence of negative-energy solutions of the Dirac
equation (see, for instance, Refs. 3 and 4 and references
therein). KT for relativistic electrons, however, has never
been observed. Its experimental observation would require
extremely high fields which are not currently available. Ad-
ditionally, as shown by Sauter,’ KT is observable provided
that the potential step is so steep to occur at distances com-
parable or smaller than the Compton wavelength: the prob-
ability of KT for a particle in a smoothly varying potential
step, in fact, is greatly reduced and the step becomes basi-
cally impenetrable as in nonrelativistic tunneling theory. As
KT has been for long time regarded as a relativistic effect
rooted in the Dirac equation and associated to particle-
antiparticle pairs creation, several authors have recently
shown that it is a generic feature of wave-packet dynamics in
spinor systems with certain linear dispersion relations, and
can thus occur also for nonrelativistic particles. In particular,
charge carriers in monolayer graphene behave as massless
Dirac fermions which can undergo KT (see, for instance,
Refs. 6-11 and reference therein). Experimental evidences of
KT have been reported very recently in graphene'>!3 and in
carbon nanotubes.'# Photonic analogs of Dirac equation have
been also theoretically proposed for light propagation in cer-
tain triangular or honeycomb photonic crystals. Similarly to
graphene, the energy bands in such crystals may show a
conical singularity, around which field propagation is de-
scribed by a two-dimensional Dirac equation for a relativistic
massless particle.”>?° Following such a similarity, photonic
analogs of relativistic phenomena for massless Dirac fermi-
ons in two-dimensional photonic crystals, including
Zitterbewegung'® and KT,?! have been recently proposed. A
photonic analog of KT has been also suggested exploiting
negative refraction in metamaterials.?”

In this work a different photonic analog of KT, based on
spatial light propagation in a one-dimensional binary photo-
nic superlattice,” is theoretically proposed. As compared to
previous photonic analogs of KT based on two-dimensional
honeycomb or triangular photonic crystals'®!®2! or on
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metamaterials,?? the present proposal offers an easier realiza-
tion and enables a simple visualization in space of wave-
packet dynamics in a KT process,* which is currently inac-
cessible in graphene systems.

II. BEAM PROPAGATION IN A BINARY SUPERLATTICE
AND QUANTUM-OPTICAL ANALOGY

A. Model

The starting point of our analysis is provided by a rather
standard model describing light transport in a one-
dimensional binary photonic superlattice realized by two in-
terleaved lattices A and B, as shown in Fig. 1(a). In practice,
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FIG. 1. (Color online) (a) Schematic of a binary superlattice,
made of two interleaved lattices A and B of waveguides with high
(dn;) and low (dn,) refractive index changes, equally spaced by a.
Note that the period of the superlattice is 2a. A modulation of re-
fractive index depth R;, superimposed to the two lattices A and B
that mimics an external scalar potential in the Dirac Eq. (4), is also
shown. Note that the superimposed index change is the same for
waveguides of sublattices A and B belonging to the same dimer, i.e.,
Ry_1=R,;, which implies ®,,_;=®,;, in Eq. (2). (b) Dispersion
curves (minibands) of the tight-binding binary superlattice [Eq. (3)]
for ®=0 (solid curves) and corresponding electron and positron
dispersion curves of the Dirac Eq. (4) near the Brillouin zone edge
q=1/(2a) (dotted curves). (c) Broad beam excitation geometry of
the binary superlattice. The tilt angle 6 of the input beam is close to
the Bragg angle 6p.
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the superlattice is realized by a sequence of equally spaced
waveguides with alternating deep/shallow peak refractive in-
dex changes dn; and dn,, and with a normalized waveguide
index profile /(x) that is assumed to be the same for the two
lattices A and B.>> A weak modulation R, of the index
change, much smaller than either dn; and dn, and equal for
the interleaved lattices A and B, i.e., such that Ry;,_;=R,,, is
also superimposed as shown in Fig. 1(a). The refractive in-
dex profile n(x) of the superlattice can be thus written as
n(x)=n,+ 2,(dn,+Ry)h(x=2la) + 2,(dn,+Ry)h(x-2la+a),
where a is the waveguide spacing and n, the substrate refrac-
tive index. Propagation of monochromatic light waves at
wavelength \ is described by the scalar wave equation (see,
for instance, Ref. 24)
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which is valid in the paraxial and weak guidance approxima-
tions. In the tight-binding limit, light transport in the lattice
can be described by means of coupled-mode equations for
the fundamental-mode field amplitudes c¢; in the various
waveguides (see, for instance, Refs. 23, 25, and 26)

i(dCl/dZ)Z—O'(Cl+1+C1_1)+(—1)156‘l+(1)lcl, (2)

where 26 and o are the propagation constant mismatch and
the coupling rate between two adjacent waveguides of lat-
tices A and B. The weak modulation R; of the refractive
index change is responsible, at leading order, to a slight
change @, of the modal propagation constants in the various
waveguides, which is accounted for by the last term on the
right-hand side of Eq. (2). Note that, for an index change R,
uniform in the various waveguides, i.e., for ®;=® indepen-
dent of index I, the tight-binding model (2) supports two
minibands, whose dispersion curves are readily calculated by
making the plane-wave Ansatz c;(q)~exp(igla—iwz) and
read®

w.(q,®) =D + & +40? cos*(qa) (3)

[see Fig. 1(b)]. It should be noted that the tight-binding
model (2) is accurate to describe beam dynamics of Eq. (1)
provided that the first two minibands of the array are mainly
excited at the input plane. Such a condition is usually satis-
fied provided that the width of angular spectrum of the beam
profile E(x,0) at the input plane does not exceed a charac-
teristic angle 6, ~ 63, where Oz=N/(4n,a) is the Bragg
angle and B is of order ~1 (see, for instance, Refs. 26-28).
At higher excitation angles, higher-order bands may enter
into the dynamics (see the discussion in Sec. IV below),
however they do not play any role in the KT process and the
analogy between photonic and relativistic KT can be thus
established within the tight-binding model (2).

B. Quantum-optical analogy

In this section we outline the quantum-optical analogy
between KT of relativistic massive fermions across a poten-
tial step and beam dynamics in a binary superlattice de-
scribed by the tight-binding model (2). In Ref. 29, it was

PHYSICAL REVIEW B 81, 075102 (2010)

recently shown that, near the Brillouin zone edge ¢
=+ 77/(2a), the dispersion relations (3) of a uniform super-
lattice approximate the positive (electron) and negative (pos-
itron) energy curves of a massive Dirac electron, and that
propagation of broad beams tilted at the Bragg angle 6
=N\/(4n,a) mimics the temporal dynamics of the relativistic
free Dirac electron. To study the photonic analog of KT in a
binary superlattice, we extend the analysis of Ref. 29 to in-
clude the effects of the superimposed modulation ®; of
propagation constants. As it will be shown below, such a
modulation mimics an external scalar (electrostatic-type) po-
tential in the Dirac equation. Let us assume that the array is
excited by a broad beam (e.g., Gaussian shaped) incident
onto the array at an angle close to the Bragg angle, i.e.,
E(x,0)=G(x)exp(2mifzngx/\), where G(x) varies slowly on
the spatial scale ~a [see Fig. 1(c)].3® At such an incidence
angle, the modes in adjacent waveguides are thus excited
with a nearly equal amplitude but with a phase difference of
/2. After setting cy(z)=(=1)",(1,2), oy =—i(=1)'(1,2),
and assuming that @, varies slowly with /, the amplitudes i,
and ¢, vary slowly with /, and one can thus write
1ol 1,2)=45(1,2) = (9 5/91) and  consider [=¢
=x/(2a) as a continuous variable rather than as an integer
index. Under such assumptions from Eq. (2) it readily fol-
lows that the two-component spinor y(£,z)= (i, )" satis-
fies the one-dimensional Dirac equation in presence of an
external electrostatic potential

ii—f—q)(g)(/f+ia'ai—él— SByY=0, (4)

_(01) _(1 o) 5
“=\1 o) P=lo —1) )

are the o, and o, Pauli matrices, respectively, and ®(¢)
=®,,=d,,_;. Note that, after the formal change oc—c, &
—mc*lh, é—x, ®—V/h, and z—t, Eq. (4) corresponds to
the one-dimensional Dirac equation for an electron of mass
m in presence of the scalar potential V(x) (see, for instance,
Ref. 2). Note also that, in our optical analog, the temporal
evolution of the spinor wave function ¢ for the Dirac elec-
tron is mapped into the spatial evolution of the field ampli-
tudes ¢ and ¥, along the z axis of the array, and that the two
components i, ¢, of the spinor wave function correspond to
the occupation amplitudes in the two sublattices A and B
composing the superlattice. For a uniform potential, the
energy-momentum dispersion relation Aw(k) of the Dirac Eq.
(4), obtained by making the Ansatz iy~ exp(iké—iwz) in Eq.
(4), is composed by the two branches w.(k)=® * e(k), cor-
responding to positive- and negative-energy states of the
relativistic free electron, where

e(k) =\ & + o?k>. (6)

Note that such two branch curves are readily obtained from
Eq. (3) after setting ¢— 7/ (2a)+k/(2a) and assuming small
values of k, i.e., they approximate the exact dispersion curves
of the two minibands of the binary array near the boundary
of the Brillouin zone [see Fig. 1(b)].

where
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III. KLEIN TUNNELING

Let us consider now a potential step, ®=0 for £<0 and
O=P,>0 for £>0, and assume that at the input plane z
=0 the wave-packet (£,0) is localized in the ¢<0 region,
far from the step, with a spectrum peaked at around k=k
>0. Note that, for the excitation geometry shown in Fig.
1(c), at the input plane one has ,(£,0)<G(2la) and
i (€,0)x G(2la—a). The positive- and negative-energy com-
ponents of the wave-packet split during propagation, with the
positive (electron) energy component wave packet that
propagates toward the potential step at £=0 and the negative
(positron) energy component moving in the opposite direc-
tion (see Figs. 5 and 6 to be commented below). In the op-
tical language, this splitting is caused by the different refrac-
tion angles of the beams belonging to the two minibands of
the array (see, for instance, Ref. 26). The regime of KT,
corresponding to the positive-energy wave packet passing
through the large repulsive step without exponential damp-
ing, is attained when the energy of the incident wave packet
falls inside the negative (positron) energy branch at £>0,
ie., when ®)>5+w), where wy=\&+kio> (see, for in-
stance, Ref. 4). We refer to this case as the Klein region, or
“region I1.” Conversely, for ®;< 6+ w, and in the classically
forbidden region ®> w,— & (region I or nonrelativistic tun-
neling regime), the wave packet does not propagate in the
&> 0 region, and an evanescent field occurs in such a region
like for the problem of tunneling of a nonrelativistic particle.
Such behaviors are illustrated in Fig. 2. In the optical con-
text, KT can be simply viewed as an interband tunneling
process between the second and the first mininbands of the
binary array, at the two sides é<0 and £>0 of the step,
which are partially overlapped owing to the applied refrac-
tive index step @ [see the lower plot in Fig. 2(b) or the right
plot in Fig. 3(c), to be discussed later]. It should be noted
that, as opposed to a similar interband tunneling process that
one could observe at the interface between two different and
suitably engineered singly periodic arrays (see, for instance,
Ref. 31), a correct analogy with KT of massive relativistic
electrons can be established when dealing with a binary su-
perlattice structure. In fact, as already noticed for graphene
systems,? the similarity between photonic and relativistic KT
requires more than the similarity of certain dispersion rela-
tions for two bands or their partial overlap at the interface
enabling the observation of a tunneling (refraction) process.
What is important in the Dirac Eq. (4) is the interconnection
between the spinor wave function components ¢, and i,
which in our superlattice structure are represented by the
occupation amplitudes of the two sublattices A and B. Such
interconnection would be lost in case of an interface of two
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FIG. 2. (Color online) Schematic of two different tunneling re-
gimes (regions I and II) in a binary superlattice with a step potential
@, corresponding to (a) the nonrelativistic regime (the potential
step is impenetrable and an incident wave packet is totally reflected)
and (b) the relativistic KT region at an increased value of @,

different singly periodic lattices with well-separated bands.
In such systems, beam dynamics at the top or at the bottom
of two different bands, overlapped at the interface as in Fig.
2(b), would be described more naturally by two independent
Schrodinger-like equations, with different and of opposite
sign for the effective masses, rather than by a Dirac equation
for a spinor wave function. It should be also noticed that, as
compared to the problem of KT for a relativistic electron,*
in our optical analog the power transmission 7" and reflection
R coefficients of a wave packet incident onto the potential
step always satisfy the power conservation law R+7=1, and
the phenomenon of electron-positron pairs creation at the
potential step, encountered in the context of the hole theory
of KT and leading to the somewhat paradoxical result R
> 1, does not occur in our classical analog.3?

The calculation of the transmission coefficient T can be
done analytically within the coupled-mode equation model
(2) by looking for plane-wave solutions as a superposition of
incident, reflected, and transmitted waves after appropriate
boundary conditions are applied at the interface. Denoting by
qo=7/(12a)+ko/ (2a) (with 0<ky,<r to ensure a positive
group velocity) the wave number of the incident wave (be-
longing to the upper miniband w, of the binary array) and by
¢, the wave number of the transmitted wave (belonging to
the lower miniband w_ of the array), the following expres-
sion for power transmission 7 is obtained in the Klein region
[region II of Fig. 2(b)]

(@) = O)(wy — - Py)sin(2qa)sin(2g,a)

= [ cos(gea)cos(q,a)]* + [(wy — d)sin(goa)cos(q,a) + (wy — 5= Py)sin(g,a)cos(goa) I’

)
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FIG. 3. (Color online) Behavior of power transmission coeffi-
cient T (solid curves) in a binary superlattice with a potential step,
as predicted by Eq. (7), versus the incidence angle 6, normalized to
the Bragg angle 6, for 0=2, =1, and for increasing values of the
potential step ®@(: (a) Py=2.8, (b) ®y=3.5, and (c) ®y=4. The
dotted curves show, for comparison, the behavior of power trans-
mission T, for KT as predicted by the Dirac Eq. (4) [see Eq. (A18)
in the Appendix]. The pictures on the right show the corresponding
band diagrams of the tight-binding superlattice in the £<0 and &
>0 regions. The overlapping between lower (positron) and upper
(electron) minibands, necessary to achieve KT, are evidenced by the
shaded regions. The upper and lower limits of the overlapping re-
gions define the cut-off angles of nonvanishing transmission in the
T curves of left panels.

where wy=w,(g0,0) and w,(q,P) is defined by Eq. (3). The
derivation of Eq. (7) is detailed in the Appendix. The wave
number ¢; of transmitted wave is obtained from the energy
conservation condition

w—(ql’q)O) = (U+(q0,0), (8)

with the constrain 0<g, </(2a) to ensure a positive group
velocity of the transmitted wave packet (see the Appendix).
A simple geometric determination of ¢, in region II is de-
picted in Fig. 2(b). A typical behavior of the transmission
coefficient T, versus the incidence angle #, normalized to the
Bragg angle 6p, is shown in Fig. 3 for a few values of step
height ®,,. Note that the wave number g, entering in Eq. (7)
is related to the incidence angle 6 by the simple relation

T 6

=——. 9
90 2a 0, )
In the figure, the transmission coefficient T}, as predicted for

KT in the framework of the Dirac Eq. (4), is shown for
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comparison by the dotted curves (see the Appendix for the
explicit expression of Tj). Note that, as expected, the two
curves T and T, well overlap provided that the energy state
involved in the tunneling process belongs to the bottom of
the upper miniband at £€<<0 (positive energy or electron
branch) and to the top of the lower miniband at £>0 (nega-
tive energy or positron branch), as in Fig. 3(a). In this case,
in fact, the discrete model (2) can be safely approximated by
the continuous Dirac Eq. (4) along the lines detailed in Sec.
II B.

IV. NUMERICAL RESULTS

We checked the correctness of the theoretical analysis,
based on the tight-binding model (2), and the feasibility of an
experimental observation of a photonic analog of KT in bi-
nary superlattices by direct numerical simulations of the
paraxial wave Eq. (1) based on a standard pseudospectral
split-step beam propagation method. Parameter values and
refractive index profiles used in the simulations typically ap-
ply to binary arrays realized in fused silica by femtosecond
laser writing and excited in the visible at A\=633 nm.?® Fig-
ure 4(a) shows the index profile n(x) of the uniform super-
lattice (i.e., with R;=0) used in the simulations, correspond-
ing to a waveguide spacing a=10 um, refractive index
changes dn;=0.002 and dn,=0.00196, and a substrate re-
fractive index n;=1.42. The Bragg angle at A=633 nm is
thus 6 =0.64°. Figure 4(b) shows the corresponding disper-
sion curves w,(q) of a few low-order bands of the superlat-
tice (band diagram), normalized to 27/\, numerically com-
puted by a standard plane-wave expansion method. Note that
the two lowest bands n=1 and n=2 in Fig. 4(b) correspond
to the two minibands w_ and w,, respectively, of the tight-
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FIG. 4. (Color online) (a) Refractive index profile of the uni-
form binary superlattice used in numerical simulations, (b) corre-
sponding band diagram, and (c) plane-wave excitation coefficients
of the array versus incidence angle 6, normalized to the Bragg angle
6p. Parameter values are given in the text.
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FIG. 5. (Color online) (a) Evolution of beam intensity (snapshot
of |[E(x,z)[?) in the binary superlattice of Fig. 4 with a superimposed
refractive index step R=-3X 107> at x=0 and (b) corresponding
band diagrams (lowest two minibands n=1 and n=2). The arrows
in (a) indicate the incident and reflected beams, belonging to the
n=2 miniband, whereas the vertical dotted line shows the position
x=0 of the refractive index step. Note that total reflection at the
interface occurs because the minibands n=2 at x<0 (electron en-
ergy branch) and n=1 at x>0 (positron energy band) are not over-
lapped [region I of Fig. 2(a)].

binding model (2) depicted in Figs. 1(b), 2, and 3, which are
involved in the KT process. Figure 4(c) shows the behavior
of band excitation coefficients |B,|> versus incidence angle 6
for the few low-order bands of the superlattice. The Bloch-
wave excitation coefficients B, (6) provide the weight of ex-
cited Bloch modes at different bands under plane-wave ex-
citation of the array at tilting angle 6 (for a formal definition
and method of calculation of B, we refer the reader to Refs.
26-28). Figures 5 and 6 show two examples of wave-packet
tunneling in a 10-cm-long binary superlattice with a super-
imposed refractive index step (R;=0 for /=0 and R,=R
=const. for /=1) corresponding to region I (nonrelativistic
regime, R=—3 X 107°) and region II (relativistic KT regime,
R=-6.5X107%) of Fig. 2, respectively. The exciting field in
the x<<0 region is a broad Gaussian beam of spot size wy
=50 wm, tilted at the angle 6=1.40;=0.90°, i.e., E(x,0)
=exp[—(x/wp)*]exp(2min,Ox/\). As can be seen from Figs. 5
and 6, the input beam breaks into the superposition of differ-
ent beams (three beams are clearly visible), belonging to the
various bands of the superlattice and that refract at different
angles (see, for instance, Ref. 28). At the chosen excitation
angle (#=1.46;), according to Fig. 4(c) the miniband n=2 is
mainly excited at the input plane, and the corresponding
beam propagates toward the interface at x=0. The other two
wave packets, clearly visible in Figs. 5 and 6 and belonging
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FIG. 6. (Color online) Same as Fig. 5, but for an increased
refractive index step R=—6.5 X 1073 corresponding to the KT region
of Fig. 2(b). The arrows in (a) indicate the incident, reflected, and
transmitted beams. Note that, as the incident and reflected beams
belong the n=2 miniband (electron energy branch), the transmitted
beam belongs to the n=1 miniband (positron energy branch).

to bands n=1 and 3, propagate in the opposite direction and
are thus not involved in the KT process. In case of Fig. 5, the
potential step at the interface is not strong enough to reach
the KT region [see the band diagram of Fig. 5(b)], and the
wave packet is completely reflected from the interface as one
can clearly see from the intensity beam evolution along the
array plotted in Fig. 5(a). Conversely, if the potential step
height is increased such that the “positron” energy branch
(i.e., miniband n=1) at x>0 overlaps with the “electron”
energy branch (i.e., miniband n=2) at x<0, as in case of
Fig. 6, a partial transmission of the wave packet across the
interface is clearly observed, which is a signature of KT [see
Fig. 6(a)].

Finally, it is worth mentioning that our optical superlattice
structure can be designed to demonstrate the disappearance
of KT in a smooth potential step. According to the original
prediction by Sauter,’ to observe KT the rise of the potential
step from ®=0 to =, should occur over a spatial scale
not greater than the Compton wavelength A-=h/(mc) (see
also Refs. 3 and 33). According to the quantum-optical anal-
ogy established in Sec. II B, in our superlattice system the
Compton wavelength, in units of waveguide spacing a, is
replaced by Ao—2mo/ 6. From the band diagram of Fig.
4(b), one can estimate o/d~ 1.1, yielding N\~6.9. As an
example, Fig. 7 shows the evolution of beam intensity (snap-
shot of |E(x,z)|?) in the same binary superlattice of Fig. 6,
but with the potential step R, smoothly varying from R=0 to
R=-6.5X 107 over a few lattice periods as indicated in the
right plots of Fig. 7. Note that, as the transition of R; from a
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FIG. 7. (Color online) Same as Fig. 6, but for a smooth refrac-
tive index step, from R,;=0 at [ — - to R;=—6.5X 107> at [ —, as
indicated in the right plots. The transition from KT, for a steep
change in refractive index [Fig. 7(a)], to inhibition of tunneling
across the step, for a smoother change in refractive index [Figs. 7(b)
and 7(c)], is clearly observed.

low to a high potential gets smoother, beam transmission at
the interface, corresponding to KT, is clearly inhibited [com-
pare Figs. 7(a)-7(c)]. In the optical context, inhibition of
light tunneling as the potential step gets smooth can be ex-
plained by considering the space-dependent band structure of
the tight-binding superlattice, as shown in Fig. 8. The space-
energy diagram represents, for a fixed value of position &, the
allowed values of w for propagative waves, which according
to Eq. (3) are formed by two intervals separated by 265, each
of width (\&+40”- ). Physically, the value of w basically
defines a correction to the propagation constant of the Bloch
mode propagating in the lattice from the reference plane-
wave value 2mn /. As & varies along the lattice, the allowed
values of w describe the two areas represented by the shaded
regions in Fig. 8, which define the analogous of the electron
and positron energy branches. Such diagrams are similar to
the energy band diagrams of a semiconductor, in which the
two superlattice minibands play the role of the conduction
and valence bands and the effect of the external potential
d(¢) is to curve the band structure. Let w=wy be the selected
value of w of the incident beam, and assume that the poten-
tial step height @ is large enough to be in the KT region of
Fig. 2(b). As the beam propagates along the lattice, the value
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FIG. 8. (Color online) Band diagrams in the (¢, w) plane, show-
ing the allowed energy intervals of the two minibands (electron and
positron branches) versus spatial distance &, for (a) a sharp potential
step and (b) a smooth potential step. The behavior of the potential
®(¢) is shown in the upper plots of (a) and (b).

of w is a constant of motion, and therefore it can be repre-
sented by an horizontal line in the band diagrams [the bold
dotted horizontal curves in the lower plots of Figs. 8(a) and
8(b)]. As shown in Fig. 8(a), for a sharp potential step at the
interface £€=0 the electron and positron energy bands are
overlapped, and the beam does not need to cross any forbid-
den region. However, owing to the sharp discontinuity of
media properties, beam transmission is not complete, and
some light is reflected like in a Fresnel discontinuity between
two different dielectric media. Conversely, for a smooth po-
tential step [see Fig. 8(b)] the beam has to cross a forbidden
region, which behaves like a potential barrier. The width of
the potential barrier is indicated by the segment AB in Fig.
8(b). Because the width AB increases as the potential step
gets smoother, the corresponding tunneling probability, i.e.,
beam transmission across the interface, rapidly decreases.
This explains the inhibition of KT observed in numerical
simulations of Fig. 7. Finally, it is worth mentioning that the
inhibition of light transmission for a smooth potential step is
peculiar to the overlapping realized at w=w, between
positive- and negative-energy minibands at £<<0 and &£>0.
In fact, let us consider the case where the value w,, defined
by the input beam launching condition, is increased such as
to realize, at the interface £=0, an overlapping between the
positive-energy bands. This condition is indicated by the
horizontal thin solid line in Figs. 8(a) and 8(b). As one
clearly sees from such figures, in this case for both a sharp
[Fig. 8(a)] and a smooth [Fig. 8(b)] potential step the beam
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does not need to cross any forbidden region, and thus beam
transmission occurs also for a smooth potential. In this latter
case, in the adiabatic approximation the transmission is even
complete because the smooth change in the band properties
avoids partial beam reflection due to the discontinuity of
media properties.

V. CONCLUSIONS

In conclusion, a photonic analog of Klein tunneling for a
relativistic electron across a potential step, based on spatial
light propagation in a waveguide superlattice, has been pro-
posed. In our optical analog, a correspondence between one-
dimensional tunneling of the spinor wave function ¢ for the
Dirac electron and spatial beam evolution along the superlat-
tice can be established, with the two components of ¢ corre-
sponding to the occupation amplitudes in the two sublattices
composing the superlattice. Klein tunneling can be thus sim-
ply visualized as optical beam refraction through a step-
index interface, superimposed to the superlattice, and ex-
plained as an interband tunneling process between positive-
energy (electron) and negative-energy (positron) minibands
of the superlattice. Design parameters to observe KT in bi-
nary superlattices with a sharp potential step, and inhibition
of KT for a smooth potential step, have been proposed. In
view of the excellent quality and control of waveguide arrays
nowadays available by laser direct-writing methods** and
owing to the possibility of a direct visualization of spatial
light propagation by means of fluorescence microscopy
techniques,?®?* it is envisaged that the present results could
motivate experimentalists toward the observation of a photo-
nic analog of KT in one-dimensional optical superlattices. A
possible extension of the present analysis could be the study
of light transport and KT in two-dimensional superlattices, in
which the larger dimensionality of the problem enables a
richer engineering of the underlying Dirac-type Hamiltonian.
For example, a two-dimensional array of straight waveguides
arranged in a honeycomb lattice,?! but with a propagation
constant mismatch 2§ applied among waveguides in the two
sublattices A and B of the honeycomb, could be designed to
realize the analog of a two-dimensional massive Dirac par-
ticle. Unlike usual monolayer graphene-type systems de-
scribing massless Dirac fermions, for a nonvanishing value
of & the energy spectrum changes from the usual linear dis-
persion near the Dirac point to a hyperbolic dispersion due to
the presence of an energy gap of the massive particle. When
a superimposed index profile in applied to mimic an external
potential, such honeycomb superlattices could be of interest
to study the analog of two-dimensional tunneling of Dirac
electrons through spatial regions of finite mass.>

APPENDIX: DERIVATION OF THE TRANSMISSION
COEFFICIENT IN THE KLEIN TUNNELING REGION

In this Appendix we derive the expression of the transmis-
sion coefficient T [Eq. (7) given in the text] in a binary
superlattice with a step potential in the region II (the KT
region) schematically depicted in Fig. 2(b). To this aim, let
us first note that, for a uniform potential ®;=® (independent
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of index [), the plane-wave solutions (eigenstates) of
coupled-mode Egs. (2) corresponding to the wave number ¢
are given by

(+)(q) _ (— 20 cos(ga)

c; w0, 5 )exp(iqal—iw+z) (A1)

for the ositive-energy branch w.(q,P)=D

+&+40” cos*(ga), and

-2
cg_)(q) - ( w_a'_C;S_(tht)l) )exp(iqal —iw_z) (A2)

for the negative-energy branch w_(q,P)=P
—\V&+40? cos’(ga). ITn Egs. (A1) and (A2), the upper
(lower) row applies to an even (odd) value of index I. To
construct the appropriate solution to Egs. (2) corresponding
to an incident, reflected, and transmitted wave packet in case
of a potential step, it is worth noticing that, for ¢ near
7/ (2a), i.e., for g near the edge of the Brillouin zone, a wave
packet belonging to the positive-energy branch, constructed
by a superposition of plane waves according to Eq. (Al),
propagates in the forward direction of the lattice for ¢
>/ (2a), and in the backward direction for ¢ </(2a), i.e.,
its group velocity v,=(dw,/dq) is positive in the former case
and negative in the latter case. The opposite holds for a wave
packet belonging to the negative-energy branch, constructed
by a superposition of plane waves according to Eq. (A2). Let
us consider now a potential step by assuming ®=0 for [
=0 and ®=d for />0, and let us consider an incident
wave, belonging to the positive-energy branch w, with wave
number g,> 7/ (2a) that comes from &— —o and propagates
toward the step. The step height ®, is chosen such that to
realize the KT region [region II of Fig. 2(b)]. In this case,
there exists a real-valued wave number ¢;, smaller than
7/ (2a) such that [see also the lower plot of Fig. 2(b)]

w—((DO’ql) = w+(0’q0)7 (A3)

i.e., the negative-energy eigenstate with wave number ¢, in
the semiarray £€>0 is in resonance with the positive-energy
incoming state, of wave number g, at £<0. Note that a
negative-energy wave packet with carrier wave number ¢,
has a positive group velocity, i.e., it propagates in the for-
ward direction far from the potential step, provided that ¢,
< 7r/(2a). We can thus search for a stationary solution to Eq.
(2) with a potential step in the form

{(agi) + ra}r))exp(— iwyz) [=1
c =

1a\" exp(— iwz) =0’

(A4)

where wy=w,(0,4)=w_(Py.q,) and a}”, a’, and af’ are

the incident, reflected, and transmitted propagative waves,
respectively, defined by

. — 20 cos(gpa
af’ =( 0 ))GXP(qual), (A5)
woy — 5
— 20 cos(gpa
a)’ = ( () )exp(— iqoal)., (A6)
Wy — 5
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o (— 20 cos(qa)
al =
Wy — o— CDO

In Egs. (A5)-(A7), the upper (lower) rows apply to an even
(odd) value of index I, whereas the complex coefficients r
and ¢ entering in Eqs. (A4) have to be determined by impos-
ing the continuity of ¢; at /=0 and /=1, i.e.,

tal = ai + rall’,

Substitution of Egs. (A5)—(A7) into Eq. (A8) yields the fol-
lowing relations
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t=-—

cos(ga)t=(1+r)cos(gpa), A9
)exp(iqlal). (A7) (q1a)t=( )cos(qoa) (A9)
¢ expliqua) = (wo — O)[expligoa) + r exp(= igya)]
e (09— 5= Do) ’
A (A10)
ta\" = a\" + ra\". (A8)
which can be solved for r and ¢, obtaining
|
i(.wo - 0)sin(2gya) ' ’ (Al1)
(wy = S)cos(qa)exp(— igoa) — (w — 6= Py)cos(goa)expliqa)
2i(wy — )sin(gga)cos(q,a) (A12)

r=-—

Some care should be paid to correctly calculate the transmis-
sion and reflection coefficients 7" and R. Let us indicate by
JD_J0 and JO the flux intensities associated to the incident,
reflected, and transmitted waves, respectively. For the dis-
crete Eq. (2), the appropriate definition of the intensity flux
at site [ is (see, for instance, Ref. 35)

(A13)

B * *
Ji=io(cicr = cjcn),

and the discrete version of the continuity equation is
(d|c)*1dz)+(J;=J,_;)=0. The correct definition of the power
transmission and reflection coefficients, 7 and R, is thus

Jw

Jo

J0

=175

R= , (A14)

where the flux intensities J(i), J(’), and J are calculated ac-

cording to Eq. (A13). Using Eqgs. (A5)-(A7), one then ob-

tains

(wy— 6= Dy)sin(2q,a)
(w - D)sin(240a)

R=|r

5 T=| (A15)

It can be readily shown from the previous equations that,
according to power conservation, R+7=1. Substitution of
Eq. (All) into the Eq. (A15) finally yields Eq. (7) given in
the text.

The determination of the power transmission coefficient
in the framework of the Dirac Eq. (4), obtained as a continu-
ous limit of the discrete model (2) under the assumptions
discussed in the text, proceeds in a standard way which is

(w — d)cos(q a)exp(—igoa) — (wy — 6— Py)cos(goa)expliqa) -

detailed in many papers and textbooks (see, for instance,
Refs. 2—4). For the sake of completeness, we just briefly give
here the main results. Let k,>0 be the wave number of an
incident progressive plane wave on the positive-energy (elec-
tron) branch in the £<<0 region, which is related to the wave
number g, previously introduced for the discrete model by
the relation

v ko
Q=5-+5

= . Al6
2a  2a ( )

In the KT region, at £>0 there exists a propagative (trans-
mitted) wave belonging to the negative-energy (positron)
branch which has the same energy as that of the incident
wave. The wave number k; of the transmitted wave is ob-
tained as a solution of the energy conservation relation

e(ky) = - e(k)) + Py = ¢, (A17)

where e(k) is defined by Eq. (6) given in the text. Note that
the solution k; <0 to Eq. (A17) must be chosen to ensure a
positive group velocity of transmitted wave packet (progres-
sive wave). The transmission coefficient 7}, is then readily
calculated as

— k(€ — &) +ko(eg— 6—Dp) |
k(€= 0) + ko(€y— 6— D)

Tp=1- (A18)
A comparison of the transmission coefficients 7" and T,
given by Egs. (7) and (A18), is discussed in the text with
reference to Fig. 3.
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